COMPARISON OF THREE METHODS TO ANALYZE NON-AROMATIC ORGANIC ACIDS IN HONEY

Mato I¹; Huidobro JF¹; Simal-Lozano J¹; Fernández-Muiño MA² & <u>Sancho MT²</u>

¹University of Santiago de Compostela (Spain) ²University of Burgos (Spain)

IMPORTANCE OF THE DETERMINATION OF ORGANIC ACIDS IN HONEY (Mato et al. 2003. J. Food Prot. 66)

Organic acids

Minor constituents of honey

Important contributions to honey properties

Antioxidant activity — Organic acids

(Gheldof et al. 2002. J. Agric. Food Chem. 50)

Indicators of fermentation — Acetic acid

(Gonnet. 1982. Opida INRA 2nd ed.)

Treatment against Varroa infestation —>

(Gregorc and Planinc. 2001. Apidologie 32)

Formic acid Lactic acid Oxalic acid

Factors for the characterization of botanical and geographical origins

(Anklam. 1998. Food Chem. 63)

To compare **enzymatic**, **HPLC** and **capillary zone electrophoresis (CZE)** procedures to analyze some non-aromatic organic acids in floral honeys.

Precision

Recovery

Specificity

Sensitivity

Simplicity

Speed

Cost

GEOGRAPHICAL ORIGIN OF THE SAMPLES

50 Samples of honey

NW SPAIN

GALICIA

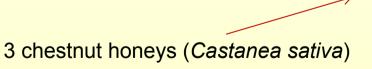
hydroalcoholic

Melissopalinology

Honey sediment: glycerined methyl-green solution

Terradillos et al. 1994. Bee Science 3

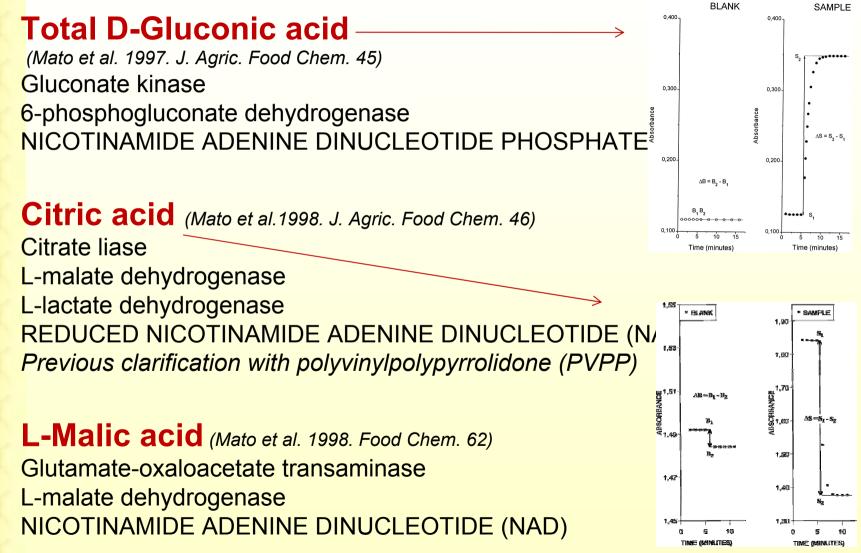
Louveaux et al. 1978. Bee World 59


Identification, counting and presentation of frequencies frequency classes

25 multifloral honeys

21 eucalyptus honeys (Eucalyptus sp.)

Von der Ohe et al. 2004. Apidologie 35



1 clover honey (*Trifolium* sp.)

Measurements at 340 nm

Total D-Gluconic acid

Precisio	n			Recover		found (a/ka)	K000V0FV(9/)
	Но	NEY SAMPLE		present	added (g/kg) 2.00	found (g/kg) 3,96	recovery(%) 100.0
	A	В	С		2.00	3.97	100.5
	3.90	7.28	11.72		2.00	3.96	100.0
	3.92	7.28	11.71		4.00	6.00	100.3
	3.92	7.25	11.70		4.00	5.99	100.0
	3.92	7.25	11.71		4.00	5.94	99.8
	3,90	7.28	11.72	1.96			
	3.92	7.26	11.72		8.00	9.94	99.8
	3.92	7.29	11.71		8.00	9.91	99.4
	3.90	7.28	11.70		8.00	9.90	99.3
	3.90	7.28	11.72		10.00	11.90	99.4
					10.00	11.88	99.2
	3.93	7.25	11.70		10.00	11.94	99.8
mean	3.91	7.27	11.71	mean			99.8
SDª	0.0116	0.0156	0.00876	SDª			0.403
% CVb	0,30	0.22	0.07>	% CV#			0.40
^a Standar	d deviation	. Coefficie	nt of variation.	^e Standar	rd deviation. ^b Coeffi	icient of variation.	

RESULTS (g/kg)

Mean: 7.37 Standard deviation: 2.92 Spread of values: from 2.38 to 13.53

Citric acid

Precision: Study of precision of the determination of **citric acid (mg/kg)**, using the direct enzymatic method and the enzymatic method with previous clarification with PVPP

Honey samples

	A	4	В		С	
	direct	clarified	direct	clarified	direct	clarified
1	10	10	10	10	10	10
iean	44.9	44.2	424.0	428.4	817.2	827.0
SD ^e	1.19	0.707	6.497	2 198	8.323	2.186
6 CVb	2.66	1.60	1.53	0.51	1.02	0.26>

* Standard deviation.^b Coefficient of variation.

Recovery: Study of the recovery of the determination of citric acid (mg/kg), using the direct enzymatic method and the enzymatic method with previous clarification with PVPP

Sample A	Recovery (%)			
addəd (mg/kg)	direct	clarified		
25	104.0	99.6		
175	100.7	100.4		
375	99.8	100.9		
775	97.3	100.9		
mean	100.5	100.5		
SD ^a	2.769	0.614		
% CV ^b	2.76	0.61		
^a Standard dəviatik	on. ^b Coefficiei	nt of variation.		

RESULTS (mg/kg)

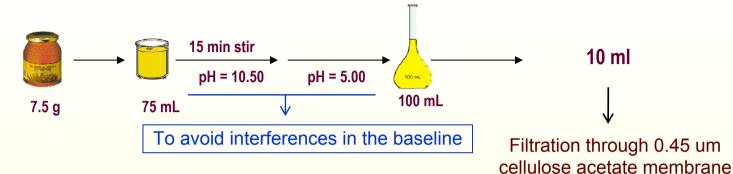
Mean: 116.3 Standard deviation: 116.0 Spread of values: from 20.7 to 451.2

Malic acid

Precision: Study of precision of the determination of **malic acid (mg/kg)**

		Honey s	samples	
	А	В	С	D
n	10	10	10	10
mean SDª	94 3.31	240 5.39	463 5.17	596 <i>4.60</i>
% CVb	3.5	2.2	1.1	0.8

^aStandard deviation.⁵Coefficient of variation.

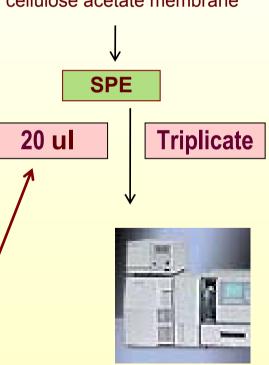

RESULTS (mg/kg)

Mean: 91.0 Standard deviation: 132.0 Spread of values: from 8.0 to 578.0

Recovery: Malic acid (mg/kg)

present (mg/kg)	added (mg/kg)	found (mg/kg)	recovery (%)
	50	99	104
	50	95	96
	50	99	104
	250	288	96
	250	300	101
	250	305	103
47			
	450	480	96
	450	511	103
	450	485	97
	650	681	98
	650	669	96
	650	713	102
n			12
Mean			100
SDª			3.45
% CV ^b			3.5

(Suárez-Luque et al. 2002. J. Chrom A 955)


SOLID-PHASE EXTRACTION (SPE) ANION-EXCHANGE CARTRIDGE

Activation: 10 ml NaOH 0.1 *M* percolation rate: 3 ml/min

Sample: 10 ml flow-rate: 0.5 ml/min

Cartridge washing: 10 ml water (3 ml/min)

Elution of organic acids: 4 ml H₂SO₄ 0.1 M (0.5 ml/min)

CHROMATOGRAPHIC CONDITIONS

Column: Spherisorb ODS-2 S5 Temperature: 25 °C Mobile phase: Metaphosphoric acid (pH 2.20) Flow-rate: 0.7 ml/min Detection: 215 nm Time of analysis: **15 minutes**

Malic Maleic Citric Succinic Fumaric

Retention times

 Parameters and correlation coefficients (r) of calibration plots (y = ax + b) y = peak height x = amount of acid (mg/kg)

	,, ,			
01	Organic acid	a	Ь	F
10	Malic	19,79	45.79	1,0000
09	Maleic	1272	41.66	1.0000
10	Citric	19.65	0.5058	0.9999
10	Succinic	6,984	46.70	0.9994
	Fumaric	1401	38.05	0.9998

Detection and quantification limits

Organic	Detection limit	Quantification limit
acid	(mg/kg)	(mg/kg)
Malic	1.55	2.93
Maleic	0.059	0.075
Citric	1.44	2.72
Succinic	(7.57)	10.93
Fumaric	0.0064	0.025

Precision

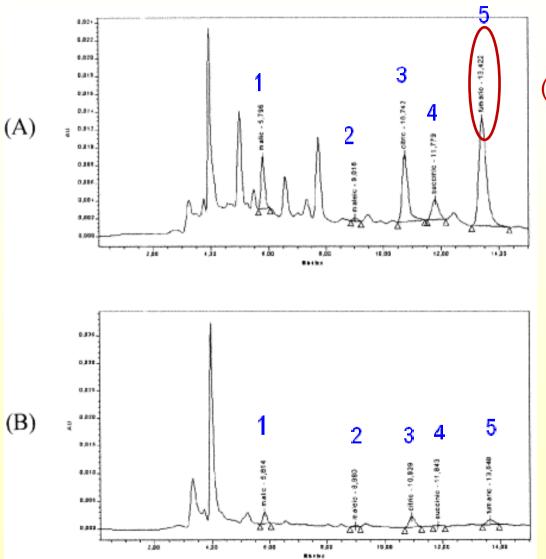
Repeatability

Acid	Repeatability	(<i>n</i> =5)				
	Sample 1		Sample 2		Sample 3	\sim
	Mean±SD	RSD	Mean±SD	RSD	Mean±SD	RSD
	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)
Malic	35,5±1,9	2,29	109.4 ± 2.9	2,67	274.1 ± 8.8	3,20
Maleic	0.213 ± 0.011	0.93	0.257 ± 0.008	3.11	0.143 ± 0.003	1.93
Citric	70.9 ± 1.6	0,90	120.8 ± 0.8	0.70	390.3 ± 10.5	2.68
Succinic	$23,44{\pm}0.04$	0,27	$31,2\pm0,22$	0,71	152.9 ± 3.1	2,02
Fumaric	0.130 ± 0.008	1.21	1.011 ± 0.007	0.68	6.88 ± 0.24	2.94

Reproducibility

less than

Acid	Reproducibili	ty (n=3)				
	Sample 1		Sample 2		Sample 3	
	Mean±SD	RSD	Mean±SD	RSD	Mean±8D	RSD
	(mg/kg)	(%)	(mg/kg)	(%)	(mg/kg)	(%)
Malic	34.6 ± 1.0	2.95	113.1 ± 3.4	3.03	268.0 ± 10.4	3,90
Maleic	0.203 ± 0.008	3.72	0.252 ± 0.011	4.40	0.147 ± 0.004	2.57
Citric	69.5 ± 3.2	4.68	122.3 ± 3.2	2,59	378.4 ± 12.0	3.18
Succinic	$23,10\pm1,12$	4.86	30,69±0,92	2,99	149.4 ± 3.4	3,07
Fumaric	$0.128 {\pm} 0.005$	4.15	0.987 ± 0.045	4.59	7.08 ± 0.09	3.23


Standard solutions recoveries after

solid-phase extraction procedure

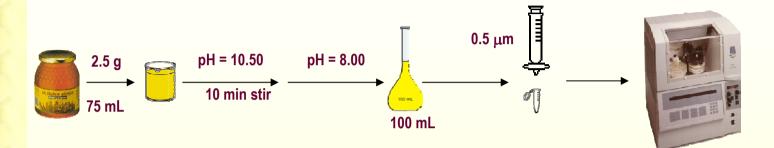
Organic	Recovery (%)	RSD
acid	(mean±SD)	(%)
Malic	101.8 ± 0.18	0,18
Maleic	103.3 ± 0.099	0.10
Citric	100.8 ± 0.085	0,08
Succinic	99.2±0.34	0.34
Fumaric	103.4 ± 1.43	1,38

Recovery of **carboxylic acids** added to honey after solid-phase extraction procedure

Organic	Recovery (%)	RSD
acid	(mean±SD)	(%)
Malic	62.9 ± 4.4	7.0
Maleic	93.4 ± 8.2	8.8
Citric	99.4 ± 1.5	1.5
Succinic	75.0 ± 5.0	6.7
Fumaric	94.4 ± 4.6	4.9

(A) Castanea sativa honey

1 Malic acid 2 Maleic acid 3 Citric acid 4 Succinic acid 5 Fumaric acid


(B) Multifloral honey

CAPILLARY ZONE ELECTROPHORESIS (CZE)

(Mato et al. 2006. J. Agric. Food Chem. 54)

CAPILLARY ZONE ELECTROPHORESIS

TREATMENT OF THE HONEY SAMPLE

E	ELECTROPHORETIC CONDITIONS		
Sample injection (in TRIPLICATE)	Hydrodynamic mode (10 cm elevation) Time of injection: 30 seconds Quantity of sample: 37.2 nL		
Electrolyte composition	7.5 m <i>M</i> NaH ₂ PO ₄ ; 2.5 m <i>M</i> Na ₂ HPO ₄ ; 2.5 m <i>M</i> TTAOH; 0.24 m <i>M</i> CaCl ₂ (pH = 6.40)		
Separation	Capillary column: 60 cm x 75 μm ID Temperature: 25 °C Running voltage: -25 kV		
Detection	UV DIRECT (185 nm)		
Time of analysis	4 minutes		

CAPILLARY ZONE ELECTROPHORESIS

ORGANIC ACIDS DETERMINED

Oxalic Formic Malic Succinic Pyruvic Acetic Lactic Citric Gluconic

CAPILLARY ELECTROPHORESIS

	LOD (mg/kg)	LOQ (mg/kg)	CALIBRATION PLOTS [y=ax+b (r)]	
OXALIC ACID	0.4	12	y = 26.7x + 502	(0.9999)
FORMIC ACID	2.1	23	y = 10.7x + 212	(0.9996)
MALIC ACID	2.0	21	y = 10.8x + 201	(0.9997)
SUCCINIC ACID	2.0	12	y = 13.4x + 294	(0.9998)
PYRUVIC ACID	7.0	39	y = 9.8x + 335	(0.9996)
ACETIC ACID	11	34	y = 17.9x + 233	(0.9999)
LACTIC ACID	4.2	26	y = 9.6x + 204	(0.9999)
CITRIC ACID	9.2	28	y = 12.8x - 533	(0.9996)
GLUCONIC ACID	38	78	y = 5.3x + 56	(0.9999)

LOD= detection limit LOQ= quantification limit y= peak area x= amount of organic acid (mg/kg) Calibration test: In triplicate

Precision Repeatability

Injection of the honey sample 5 times Relative standard deviations (RSDs):

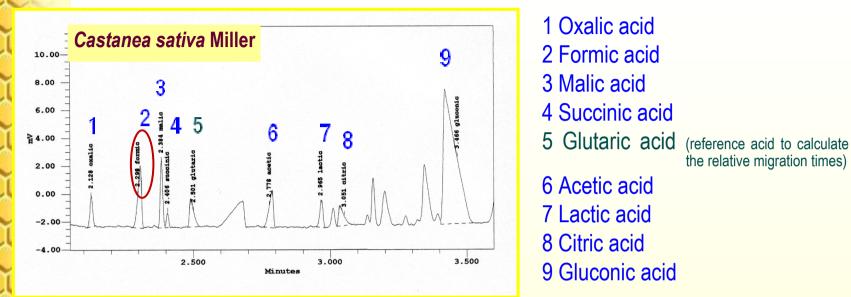
0.2% (lactic acid) - 4.6% (formic acid)

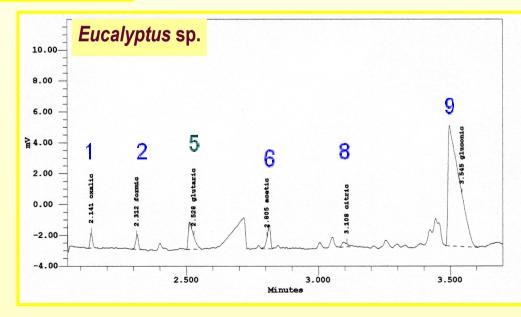
Reproducibility

Analysis of each honey sample on 3 different days over 1 month.

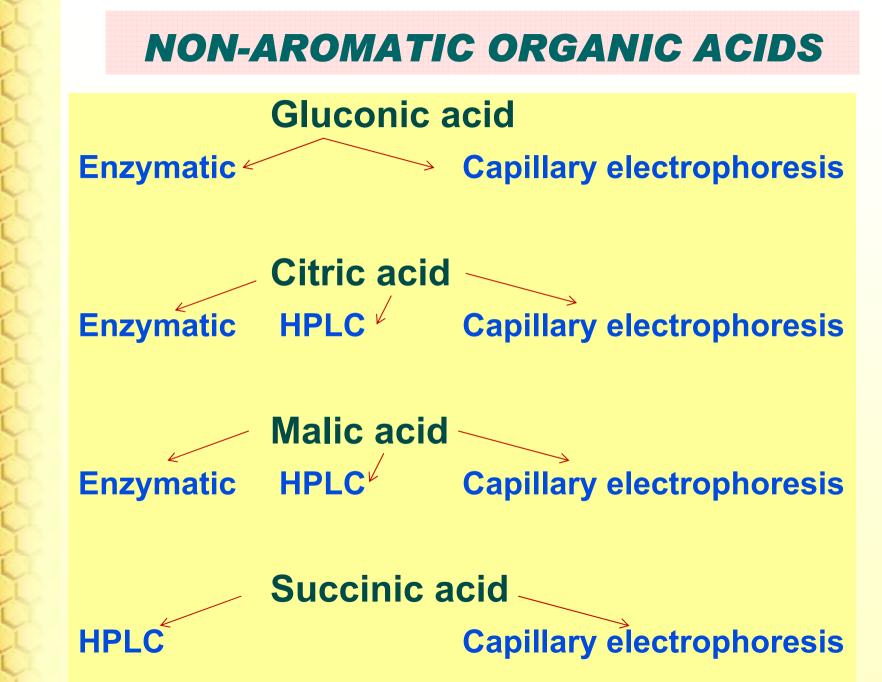
Relative standard deviations (RSDs):

0.5% (acetic acid) – 10.0% (oxalic acid)


Recovery


2 honey samples: Low organic acid contents.

Adding three increasing amounts of an organic acid standard mixture to a half amount of honey (1.25 g)


Recoveries (mean (%) <u>+</u> SD) 89.4 <u>+</u> 10.1 (citric acid) – 104.6 <u>+</u> 4.8 (acetic acid)

CAPILLARY ZONE ELECTROPHORESIS

COMPARISON OF METHODS

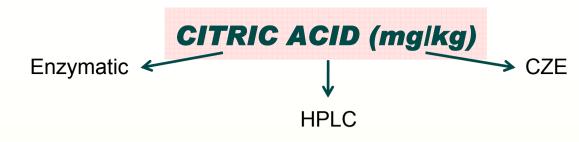
SPSS for Windows v. 10.0.6 SPSS Inc. (1999)

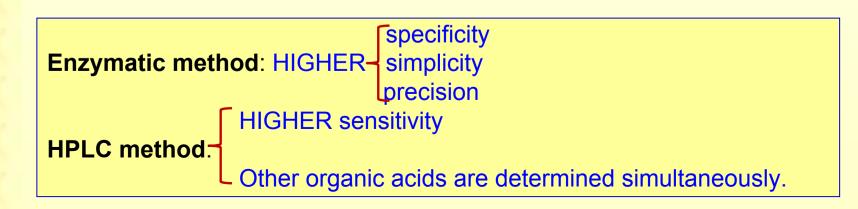
Purposes:

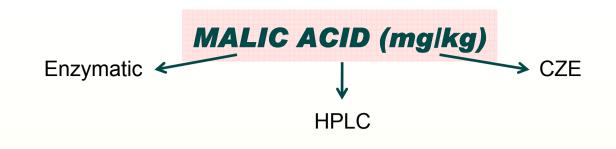
1.- To estimate if the methods (enzymatic, HPLC and CZE) lead to the same results.

Correlation among the results obtained by the three methods.

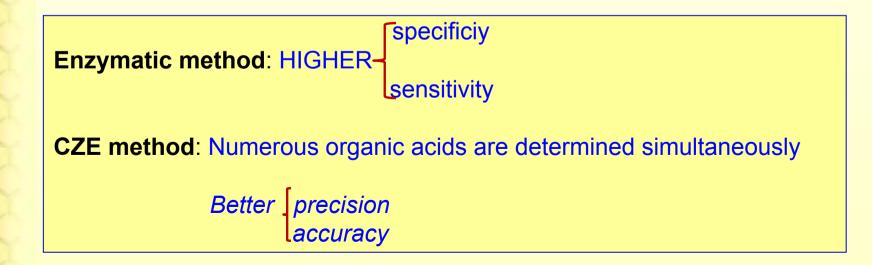
Comparison of values: *t-test* at a confidence level of 99%.


2.- To propose a method of choice.


- 1) There is a **significant correlation** between the values of gluconic acid between both methods (*r*= 0.998).
- 2) Student's t test showed that there are not significant differences (p > 0.01) between the results obtained by both the enzymatic method and the CZE procedure.


Enzymatic method: HIGHERsensitivity

CZE method: Numerous organic acids are determined simultaneously



- There is a significant correlation among the values of citric acid obtained by the three methods (the lowest *r* was 0.990). The best correlation was obtained between <u>enzymatic</u> and <u>HPLC</u> mehtods (*r*= 0.993).
- 2) Student's t test showed that there are not significant differences (p > 0.01) between:
 - All the results obtained by both enzymatic and HPLC methods.
 - All the results obtained by HPLC and CZE methods.
 - The results obtained by both enzymatic and CZE methods, but only for concentrations lower than 250 mg/kg.

- There is a significant correlation among the values of malic acid obtained by the three methods (the lowest *r* was 0.947). The best correlation was obtained between <u>enzymatic</u> and <u>CZE</u> mehtods (*r*= 0.999).
- 2) Student's t test showed that there are not significant differences (p > 0.01) between the results obtained by the three methods.

There is **no significant correlation** between the values of succinic acid between both methods.

Values of succinic acid are considerably higher by HPLC

Interference

CZE method:

► No interferences

Excellent recoveries

CONCLUSIONS

Gluconic acid has been determined by enzymatic and CZE methods. Both methods lead to the same results at a confidence level of 99% for the range of values studied. Enzymatic method provides greater specificity and sensitivity, whereas CZE has the advantage of determining a profile of non-aromatic organic acids. Precision and accuracy have been similar with both methods, but slightly better with the enzymatic procedure.

Citric acid has been determined by enzymatic, HPLC, and CZE methods. All methods are comparable, at a confidence level of 99%, for concentrations lower than 250 mg/kg. For any concentration, the **methods of choice** would be enzymatic and HPLC. Enzymatic method provides greater specificity, precision and simplicity. HPLC procedure gives higher sensitivity and a profile of other minority non-aromatic organic acids.

Malic acid has been determined by enzymatic, HPLC, and CZE methods. All methods lead to the same results at a confidence level of 99% for the range of values studied. Enzymatic method provides greater specificity and sensitivity, whereas CZE has the advantage of determining a profile of non-aromatic organic acids. Precision and accuracy have been similar with both methods, but slightly better with the CZE procedure.

Succinic acid has been determined by HPLC, and CZE methods, which are not comparable. The **method of choice** would be CZE, because **there are not interferences** and the procedure provides **excellent recoveries**.

MANY THANKS FOR YOUR ATTENTION

M. Teresa Sancho University of Burgos Food Science Department Plaza Misael Bañuelos s/n 09001 <u>Burgos</u> (SPAIN), EU Phone: + 34-947-258-813 FAX: + 34-947-258-831 E-mail: mtsancho@ubu.es