DETECTION OF BEESWAX ADULTERATION WITH HYDROCARBONS USING GAS CHROMATOGRAPHY WITH MASS DETECTOR (GC-MS)

Ewa Waś, Helena Rybak-Chmielewska, Teresa Szczęsna e-mail: <u>ewa.was@man.pulawy.pl</u>

Research Institute of Pomology and Floriculture, Apiculture Division, Department of Bee Products, 24-100 Puławy, Kazimierska 2, Poland.

Beeswax adulteration with hydrocarbons

For a few years, due to the lack of mandatory regulations concerning beeswax quality, this product has been increasingly adulterated with much cheaper hydrocarbons of alien origin. As a result, the quality of the product is compromised which makes it unusable by the industries.

Adulteration of beeswax with hydrocarbons has also a negative impact on the quality of comb foundation. When used on regular basis in bee farming adulterated beeswax interferes with normal brood rearing and development *(Jimenez i in., 2005).*

Beeswax adulteration with hydrocarbons

According to the requirement laid down by PN-R-78890 "Wosk pszczeli" the content of hydrocarbons cannot exceed 16.5%.

Higher contents of those compounds indicate contamination of that product with alien hydrocarbons.

Detection of beeswax adulteration with hydrocarbons

The analysis of the chemical composition of beeswax because of its special nature is exceptionally difficult even if state-of-the-art equipment is used.

Until recently, in order to detect adulteration of beeswax with hydrocarbons column chromatography combined with weight analysis was used in Poland (PN-R-78890 "Wosk pszczeli"- "Beeswax"). The method allows only the determination of total hydrocarbons occurring in beeswax.

The aim of the study

The aim of the study was to describe hydrocarbons in natural beeswax. Another objective was to develop a new method to detect beeswax adulteration with paraffin.

Material and methods

The experiment material was composed of samples of:

- natural beeswax
- commercial paraffin (product most frequently used to adulterate beeswax)
- hydrocarbon-adulterated beeswax
- commercial comb foundation

Hydrocarbon assays were made on a gas chromatograph with a Shimadzu mass detector (Gas Chromatograph Mass Spectrometer, GC-MS-QP 2010 Plus).

Material and methods

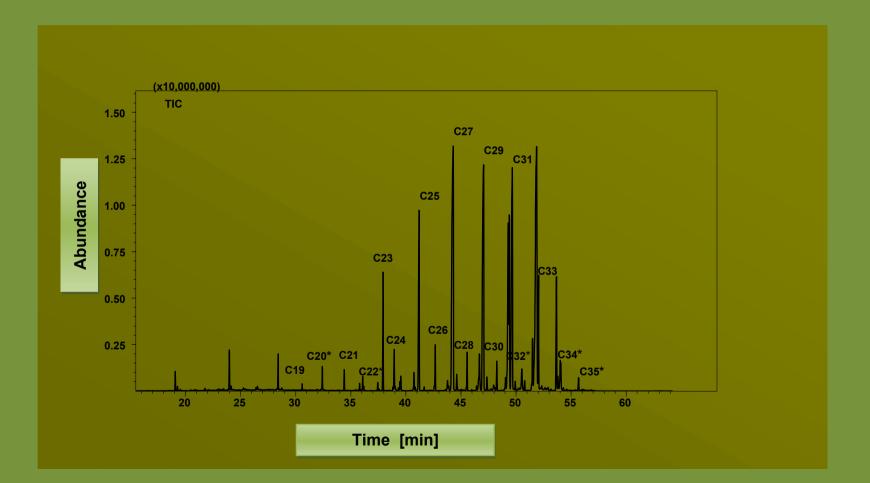

- Hydrocarbon fraction was isolated on a silica column according to Polish Standard PN-R-78890.
- Hydrocarbons were separated on a non-polar ZB- 5HT 30m x 0.25mm x 0.25µm column manufactured by Phenomenex. Chromatography separation of hydrocarbons in temperature program was done with helium as a carrier gas.
- An electron source was used to ionize sample molecules in the gaseous phase. The temperature of the electron source was 230°C. EI mass spectra were recorded at a standard electron energy of 70eV.
- Based on the electron spectra of the NIST 05 library and on the retention indexes, identyfication of studied compounds was done.

Table 1. The homologous series of saturated hydrocarbons with unramified carbon chains occurring in natural beeswax

The number of carbon atoms in the molecule	Formula	Compound	Molecular ion
19	C ₁₉ H ₄₀	Nonadecane	268
20	$C_{20}H_{42}$	Eicosane	282*
21	$C_{21}H_{44}$	Heneicosane	296
22	C ₂₂ H ₄₆	Docosane	310*
23	C ₂₃ H ₄₈	Tricosane	324
24	C ₂₄ H ₅₀	Tetracosane	338
25	$C_{25}H_{52}$	Pentacosane	352
26	С ₂₆ Н ₅₄	Hexacosane	366
27	C ₂₇ H ₅₆	Heptacosane	380
28	C ₂₈ H ₅₈	Octacosane	394
29	C ₂₉ H ₆₀	Nonocosane	408
30	C ₃₀ H ₆₂	Triacontane	422
31	C ₃₁ H ₆₄	Heneitriacontane	436
32	C ₃₂ H ₆₆	Dotriacontane	45 0*
33	C ₃₃ H ₆₈	Tritriacontane	464
34	C ₃₄ H ₇₀	Tetratriacontane	478*
35	C ₃₅ H ₇₂	Pentatriacontane	492*

* Molecular ion not observed.

Chromatogram of alkanes in natural beeswax

Electron impact spectrum of alkanes

Hydrocarbons containing more than eight carbon atoms show very similar spectra and the identification of those compounds depends on the detection of the molecular ion peak.

As a rule, a peak of the molecular ion of saturated hydrocarbons with a simple (unramified) chain is visible. However, its intensity decreases with length and ramification degree of the chain. In the spectra of simple-chain alkanes peak groups are observed at m/z values differing by 14 daltons (CH_2).

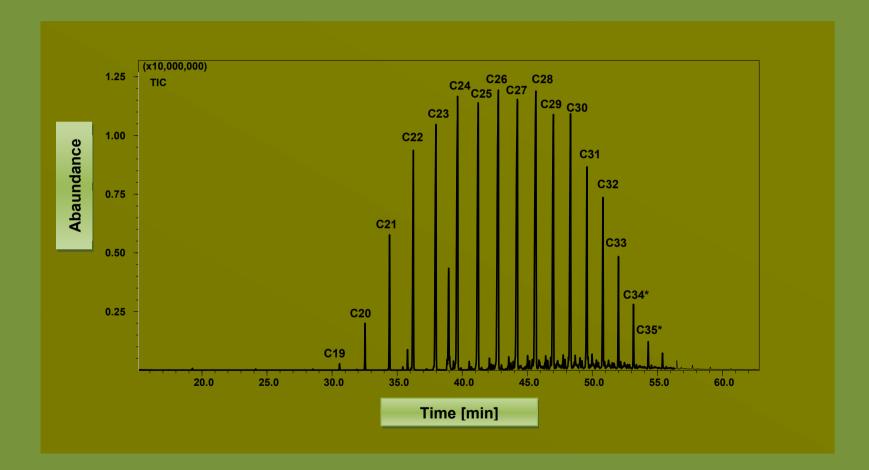
Electron impact spectrum of alkanes

Within each group, the peak of the highest intensity corresponding to a $[C_nH_{2n+1}]^+$ fragment occurs at m/z= 14n+1 (m/z= 29, 43, 57, 71, 85, 99 etc.) and it arises from the breakdown of C-C bonds at different sites of the carbon chain.

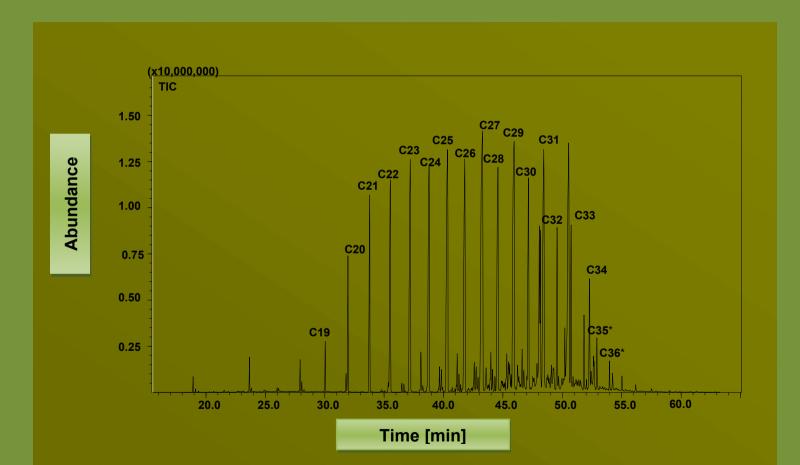
The $[C_nH_{2n+1}]^+$ ions are accompanied by ions of the $[C_nH_{2n}]^{+}$ $[C_nH_{2n-1}]^+$ and formulas which arise as a result of the primary fragmentation ions being eliminated.

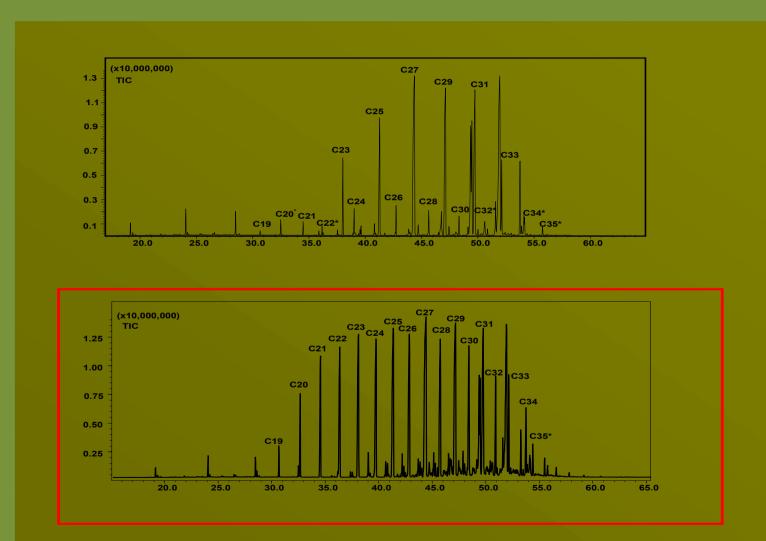
Table 2. Alkenes and dienes occurring in natural beeswax

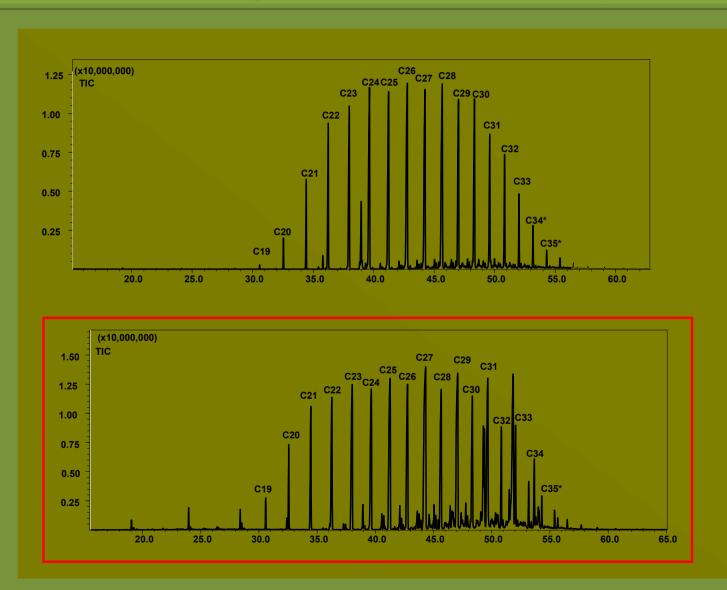
The number of carbon atoms in the molecule	Formula	Compound	Molecular ion
23:1* (1)**	C ₂₃ H ₄₆	Tricosene	322
25:1 (1)	C ₂₅ H ₅₀	Pentacosene	350
27:1 (1)	C ₂₇ H ₅₄	Heptacosene	378
29:1 (2)	C ₂₉ H ₅₈	Nonacosene	406
31:2 (1)	C ₃₁ H ₆₀	Heneitriacontadiene	432
31:1 (2)	C ₃₁ H ₆₂	Heneitriacontene	434
33:2 (1)	C ₃₃ H ₆₄	Tritriacontadiene	460
33:1 (1)	C ₃₃ H ₆₆	Tritriacontene	462
35:2 (1)	C ₃₅ H ₆₈	Pentatriacontadiene	488
35:1 (2)	C ₃₅ H ₇₀	Pentatriacontene	490


* :1, :2- the number of double bonds.

**** (1,2)- the number of identified isomeres.**


Chromatogram of alkenes and dienes in natural beeswax


Chromatogram of alkanes in commercial paraffin


Chromatogram of alkanes in samples of paraffin – adulterated beeswax

The comparison of alkanes in natural beeswax and alkanes in commercial paraffin

The comparison of alkanes in commercial paraffin and alkanes in paraffin – adulterated beeswax

Conclussions

The homologous series of saturated hydrocarbons with unramified carbon chains occurring in natural beeswax was identified (from $C_{19}H_{40}$ to $C_{35}H_{72}$).

Some of unsaturated hydrocarbons with a single double bond $(C_{23}H_{46}, C_{25}H_{50}, C_{27}H_{54}, C_{29}H_{58}, C_{31}H_{62}, C_{33}H_{66}, C_{35}H_{70})$ and some of unsaturated hydrocarbons with two double bonds $(C_{31}H_{60}, C_{33}H_{64}, C_{35}H_{68})$ occurring in natural beeswax were also identyfied.

The method to detect beeswax adulteration with hydrocarbons by using the GS-MS technique was elaborated.

Conclussions

The comparison of hydrocarbon chromatograph spectra in samples of natural beeswax with hydrocarbon chromatograph spectra in samples of commercial paraffin allowed for detection of samples paraffin – adulterated beeswax.

The investigations on the composition of natural beeswax and on the detection of the adulterations of that compound with hydrocarbons will be continued in the forthcoming years.

Thank You for attention

